listenclosely Documentation
Release 0.1.1

Juan Madurga

January 15, 2016






Contents

listenclosely

1.1 Documentation . . . . . . . o oo it e e e e e e e e e e e e
1.2 Quickstart . . . . . e e e e e e
I3 Features . . . . . . . o it e e e e e e e e e e e e
1.4 Running Tests . . . . . . . L e e e e e e e e
Installation

Usage

3.1 Howit works . . . o o o o e e e e
Customization

4.1 AEEntStategy . . . . . . e e e e e e e e e e e e e e
4.2 Message Service Backend . . . . . ... e e e e
Contributing

5.1 Types of Contributions . . . . . . . . . o o i e e e e e e e e e e e e e
52 GetStarted! . . ..o e e e
5.3 Pull Request Guidelines . . . . . . . . . . . e e
540 TIPS .« o o e e e e e e
Credits

6.1 DevelopmentLead . . . . . . . .. . ...
6.2  ContribUtOrS . . . . . . . . e e e e e e e e e e e
History

7.1 0.1.0(2016-01-14) . . . . o o e e

AR W WW

wn

11
11
11

13
13
14
14
15

17
17
17

19







listenclosely Documentation, Release 0.1.1

Contents:

Contents 1



listenclosely Documentation, Release 0.1.1

2 Contents



CHAPTER 1

listenclosely

CI: PyPL: Docs: Listenclosely is a django-app that works as a middleman to connect instant messaging clients.
Think on a Call Center/Customer Service using using instant messaging... exactly what it does.

e It is simple, connects Askers with online Agents until the Chat is considered as terminated and the Agent is
released to attend other Asker chats.

« It is flexible, so you can define your own strategies to assign Agents to Askers and your own messaging backend
services.

Messaging Services integrated:
* Whatsapp https://github.com/jlmadurga/listenclosely-whatsapp

 Telegram https://github.com/jlmadurga/listenclosely-telegram

1.1 Documentation

The full documentation is at https://listenclosely.readthedocs.org.
* Askerl is chatting with the Busy Agent
» Asker2 try to chat but no free Agent was free so is waiting with a Pending chat to be attended by an agent

* Asker3 is opening a chat and Online Agent will be assigned to the chat

1.2 Quickstart

Install listenclosely:

’pip install listenclosely

Then use it in a project:

’import listenclosely

Add it to django apps and migrate:

INSTALLED_APPS = [

'listenclosely’',



https://github.com/jlmadurga/listenclosely-whatsapp
https://github.com/jlmadurga/listenclosely-telegram
https://listenclosely.readthedocs.org

listenclosely Documentation, Release 0.1.1

1
python manage.py migrate

Select, install and configure service backend

‘LISTENCLOSELY_MESSAGE_SERVICE_BACKEND = "listenclosely_telegram.service.TelegramMessage$erviceBacken<

Define your agent strategy or define your own:

’LISTENCLOSELY_AGENT_STRATEGY = 'listenclosely.strategies.first_free.FirstFreeAgentStrat#gy'

Add step to your celery app:

from listenclosely.celery import ListenCloselyAppStep
app.steps['worker'].add(ListenCloselyAppStep)

Start your celery app usign gevent:

celery ——app=demo_app.celery:app worker —-P gevent

Call listen task or define a celery scheduler to execute:

from listenclosely import tasks
tasks.listen.delay ()

1.3 Features

* Connects Askers and Agents in chats to establish a Chat
* Strategies to find Agent to attend new Asker chat. Define your own strategies
* Messaging Service Backend: Define your own messaging service backend implementations.

* Cron tasks for attending pending chats and to terminate obsolete chats to release Agents

1.4 Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements/test.txt
(myenv) $ make test

4 Chapter 1. listenclosely



CHAPTER 2

Installation

At the command line:

$ pip install listenclosely

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv listenclosely
$ pip install listenclosely




listenclosely Documentation, Release 0.1.1

6 Chapter 2. Installation



CHAPTER 3

Usage

Then use it in a project:

import listenclosely

Add it to django apps and migrate:

INSTALLED_APPS = [
'listenclosely’',

]
python manage.py migrate

Select, install and configure service backend

‘LISTENCLOSELY_MESSAGE_SERVICE_BACKEND = "listencloselyiteleqram.Service.TeleqramMessage#erviceBacken<

Define your agent strategy or define your own:

‘LISTENCLOSELY_AGENT_STRATEGY = 'listenclosely.Strateqies.firstffree.FirstFreeAgentStrat%qy’

Add step to your celery app:

from listenclosely.celery import ListenCloselyAppStep
app.steps['worker'].add(ListenCloselyAppStep)

Start your celery app usign gevent:

celery ——app=demo_app.celery:app worker —-P gevent

Call listen task or define a celery scheduler to execute:

from listenclosely import tasks
tasks.listen.delay ()

NOTE: listenclosely comes with a demo with celery configuration example.




listenclosely Documentation, Release 0.1.1

3.1 How it works

Busy Agent
Askerl
ListenCloselyApp
Online Agent
Asker? Pending Chat
Offline Agent
Asker3

¢ Askerl is chatting with the Busy Agent
» Asker2 try to chat but no free Agent was free so is waiting with a Pending chat to be attended by an agent
» Asker3 is opening a chat and Online Agent will be assigned to the chat

State machines of Agent and Chat:

8 Chapter 3. Usage



listenclosely Documentation, Release 0.1.1

listenclosely. Agent

unregister elease

3.1. How it works 9



listenclosely Documentation, Release 0.1.1

listenclosely.Chat

10

Chapter 3. Usage



CHAPTER 4

Customization

Listenclosely is easy to be customized with your own requirements

4.1 Agent stategy

Just extend strategies.base.BaseAgentStrategy and define your own free_agent function:

class FirstFreeAgentStrategy (BaseAgentStrategy) :

nnn

Choose first free agent
mmww

def free_agent (self):
free_agents = Agent.online.all ()
if free_agents:
return free_agents[0]
return None

Then configure settings:

] LISTENCLOSELY_AGENT_STRATEGY = 'your_strategy.YourAgentStrategy'

4.2 Message Service Backend

Extend services.base.BaseMessageServiceBackend. You must implement some methods:

def listen(self):
mmwn
Connect to service and listen for receive messages.
To implement in concrete services

mmn

raise NotImplementedError ('subclasses of BaseMessageServiceBackend must override ligten () method

def send_message(self, id_service, content):
mmwn
Send message to a instant messages service
To implement in concrete services
:rtype string message_id: identifier for message service

mmn

raise NotImplementedError ('subclasses of BaseMessageServiceBackend must override send_message () 1

11



12

listenclosely Documentation, Release 0.1.1

def disconnect (self):

mmn

Disconnect to service.

To implement in concrete services

mmn

raise NotImplementedError ('subclasses of BaseMessageServiceBackend must override di

Use other services as example. At the moment:

* Whatsapp: https://github.com/jlmadurga/listenclosely-whatsapp
¢ Telegram: https://github.com/jlmadurga/listenclosely-telegram

Chapter 4. Customization

connect ()

met


https://github.com/jlmadurga/listenclosely-whatsapp
https://github.com/jlmadurga/listenclosely-telegram

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/jlmadurga/listenclosely/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

5.1.4 Write Documentation

listenclosely could always use more documentation, whether as part of the official listenclosely docs, in docstrings, or
even on the web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jlmadurga/listenclosely/issues.

If you are proposing a feature:

13


https://github.com/jlmadurga/listenclosely/issues
https://github.com/jlmadurga/listenclosely/issues

listenclosely Documentation, Release 0.1.1

 Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up listenclosely for local development.

1. Fork the listenclosely repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/listenclosely.git

Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv listenclosely
$ cd listenclosely/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python
versions with tox:

$ flake8 listenclosely tests
$ python setup.py test
S tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

L.
2.

The pull request should include tests.

If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check https://travis-
ci.org/jlmadurga/listenclosely/pull_requests and make sure that the tests pass for all supported Python versions.

14

Chapter 5. Contributing



https://travis-ci.org/jlmadurga/listenclosely/pull_requests
https://travis-ci.org/jlmadurga/listenclosely/pull_requests

listenclosely Documentation, Release 0.1.1

5.4 Tips

To run a subset of tests:

‘$ python -m unittest tests.test_listenclosely

5.4. Tips

15



listenclosely Documentation, Release 0.1.1

16 Chapter 5. Contributing



CHAPTER 6

Credits

6.1 Development Lead

* Juan Madurga <jlmadurga@gmail.com>

6.2 Contributors

None yet. Why not be the first?

17


mailto:jlmadurga@gmail.com

listenclosely Documentation, Release 0.1.1

18 Chapter 6. Credits



CHAPTER 7

History

7.1 0.1.0 (2016-01-14)

¢ First release on PyPI.

19



	listenclosely
	Documentation
	Quickstart
	Features
	Running Tests

	Installation
	Usage
	How it works

	Customization
	Agent stategy
	Message Service Backend

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2016-01-14)


